Астрофизика

Как ученые определяют температуру звезд, находящихся на расстоянии триллионов километров?

Как вы измеряете температуру своего тела? Самый простой ответ - "с помощью термометра". Но так ли это и со звездами? Ответ - большое НЕТ. Как известно, температура звезды может достигать нескольких тысяч Кельвинов. Но на сегодняшний день нет такого термометра, который выдерживал бы такие высокие температуры. Более того, даже если такой термометр со сверхмощными способностями существует, кто будет использовать его на звездах в миллионы световых лет от нас? Итак, как мы измеряем температуру звезд?

Здесь нам на помощь приходят косвенные методы. Чтобы преодолеть вышеупомянутые проблемы, астрофизики используют ряд косвенных методов измерения температуры. Давайте посмотрим на некоторые из них по очереди!

Закон смещения Вина

Закон смещения Вина касается спектра излучения черного тела. В соответствии с этим кривая излучения черного тела для разных температур будет иметь пик на разных длинах волн, которые обратно пропорциональны температуре. Используя эту обратную зависимость между длиной волны и температурой, можно оценить температуры звезд.

Однако это применимо только к звездам, у которых спектр очень близок к спектру черного тела. Более того, должны быть доступны также спектры, откалиброванные по потоку рассматриваемой звезды. Однако этот метод не дает очень точных результатов, поскольку звезды, как правило, не являются черными телами.

Закон Стефана — Больцмана

Еще один закон, который можно использовать для измерения температуры звезд, - это закон Стефана — Больцмана. Закон Стефана – Больцмана описывает мощность, излучаемую черным телом, с точки зрения его температуры. Согласно этому закону, общая лучистая тепловая мощность, излучаемая поверхностью, пропорциональна четвертой степени ее абсолютной температуры. L = 4πR2 σT4. Здесь σ - постоянная Стефана-Больцмана, L - светимость, R и T - радиус и температура рассматриваемой звезды.

Сначала мы измеряем полный поток света, исходящего от звезды. Объединив эти факторы, ученые оценивают светимость. А с помощью интерферометров можно определить радиус звезды. В конце концов, температура измеряется путем включения всех этих членов в формулу Стефана — Больцмана. Ограничивающим фактором здесь является сложность измерения радиусов самых больших или ближайших звезд. Таким образом, измерения существуют только для нескольких гигантов и нескольких десятков ближайших звезд главной последовательности. Однако они действуют как фундаментальные калибраторы, с которыми астрофизики сравнивают и калибруют другие методы.

По спектральному анализу звезды

Мы знаем, что атомы/ионы имеют разные уровни энергии. И численность этих уровней зависит от температуры. И население этих уровней зависит от температуры. Более высокие уровни заняты при более высоких температурах и наоборот - при более низких. Переходы между уровнями могут привести к излучению или поглощению света на определенной длине волны в зависимости от разницы в энергии между соответствующими уровнями. Как правило, звезда горячее внутри и холоднее снаружи. Более холодные вышележащие слои поглощают излучение, исходящее из центра звезды. Это приводит к появлению линий поглощения в полученном нами спектре.

Спектральный анализ состоит из измерения силы этих линий поглощения для различных химических элементов и разных длин волн. Сила линии поглощения зависит в первую очередь от температуры звезды и количества конкретного химического элемента. Однако на нее могут влиять и некоторые другие параметры, такие как гравитация, турбулентность, структура атмосферы и т.д. Этот метод дает температурные измерения с точностью до +/-50 Кельвинов.

Взаимосвязь цвета и температуры

Еще один метод измерения температуры звезд - анализ их цвета. Хотя все звезды кажутся белыми, при внимательном рассмотрении они имеют разные цвета. Вариации являются результатом их температуры. Холодные звезды кажутся красными, а горячие - синими. Мы измеряем цвет звезды с помощью прибора, называемого фотоэлектрическим фотометром.

Это включает в себя пропускание света через различные фильтры и определение количества, которое проходит через каждый фильтр. Измерения фотометра преобразуются в температуру с использованием стандартных шкал. Этот метод очень полезен, когда хороший спектр звезды недоступен. Результаты, полученные этим методом, имеют точность до +/- 100-200 К. Однако этот метод дает плохие результаты для более холодных звезд.

Каждый из вышеупомянутых методов имеет свои преимущества и недостатки. Тем не менее астрофизики во всем мире широко используют эти методы, и в конечном итоге дают удовлетворительные результаты.

Подписывайтесь на нас
Back to top button