Общие знания

9 лучших примеров продольных волн в повседневной жизни

В физике волны относятся к возмущениям в среде, несущей энергию без общего движения частиц. Двумя наиболее распространенными типами волн являются электромагнитные и механические волны. Оба передают информацию, энергию и импульс, но не передают частицы в среде.

Механическая волна - это вибрация в материи, которая передает энергию через вещество. Однако электромагнитная волна (например, свет) может проходить через вакуум.

Механические волны можно дополнительно разделить на категории в зависимости от способов их распространения. Три типа распространения - это поперечные, продольные и поверхностные волны. В этой статье мы остановимся на продольных волнах.

Что такое продольные волны?

В продольной волне частицы движутся в среде в том же измерении, что и направление движения волны. Другими словами, смещение частицы параллельно направлению движения волны.

Рисунок 1

При прохождении через среду эти волны создают сжатие и разрежение.

  • Сжатие - это область высокого давления, где волновые частицы находятся близко друг к другу.
  • Разрежения - это области низкого давления, где частицы распространяются дальше друг от друга.

Как вы можете видеть на рис.1, сжатие перемещается слева направо, и энергия передается в том же направлении. Однако ни одна частица не переносится вдоль продольной волны. Вместо этого все они движутся вперед и назад между сжатием, когда волна проходит через среду.

Расстояние между центрами двух последовательных областей (между сжатиями или разрежениями) определяет длину волны продольной волны. Она может производиться в любой среде, включая твердую, жидкую и газовую среду.

Чтобы лучше объяснить это явление, мы перечислили некоторые из лучших примеров продольных волн, которые люди видят в своей повседневной жизни.

9. Вибрационный камертон

Форма: Звуковые волны

Камертон наглядно иллюстрирует, как вибрирующий объект может генерировать звук. Он содержит рукоятку и два зубца, изготовленные из эластичного металла (обычно из стали). Когда вы ударяете по камертону резиновым молотком, его зубцы начинают вибрировать, вызывая возмущения соседних молекул воздуха.

Когда зубец вытягивается наружу из своего нормального положения, окружающий воздух сжимается, создавая область высокого давления (сжатие) рядом с зубцом. Когда зубец затем перемещается внутрь, он расширяет окружающие молекулы воздуха в большую область пространства, которая создает область низкого давления (разрежение) рядом с зубцом.

Пока зубцы вибрируют, они создают чередующийся рисунок областей высокого и низкого давления. Эти области проходят через соседние молекулы воздуха, перенося звуковые сигналы из одного места в другое.

8. Ультразвуковое исследование (Сонография)

Сонограмма плода в утробе матери | Викимедиа

Форма: высокочастотные звуковые волны

Сонография использует ультразвуковые волны для создания изображений внутренних частей тела, таких как кровеносные сосуды, мышцы, суставы, сухожилия и внутренние органы. Эти сонограммы (также называемые ультразвуковыми изображениями) формируются путем передачи ультразвуковых импульсов в ткани с помощью зонда. Импульсы отражаются от тканей с отчетливыми характеристиками отражения и обрабатываются и преобразуются в цифровое изображение.

В отличие от других методов медицинской визуализации, ультразвук дает изображения в реальном времени. Инструменты портативные, менее дорогие и не используют вредное ионизирующее излучение. Тем не менее они обладают ограниченным полем зрения и требуют квалифицированного оператора.

7. Дрожание окон при приближении грома

Форма: звуковые волны

Во время грозы разряды молнии производят мощные и быстрые волны давления, которые распространяются на очень большие расстояния. Когда эти волны достигают вашего дома, они заставляют оконные стекла вибрировать таким же образом, как наша барабанная перепонка вибрирует в ответ на звуковые волны.

В зависимости от характеристик офиса/дома и его окон (таких, как уровень изоляции, структура оконных рам и толщина стекла) вибрирующие оконные стекла могут создавать свой собственный характерный шум. В большинстве случаев это похоже на дребезжание или жужжание.

6. Цунами

Форма: волны на воде (или поверхностные волны)

Цунами - это не то, что вы видите каждый день, но, тем не менее, мы включили это в наш список, чтобы охватить каждый аспект продольных волн. Цунами очень отличается от приливных волн: оно вызвано землетрясением под водой.

В отличие от типичных океанских волн, волны цунами возникают, когда вода движется под действием силы тяжести и излучается через океан, как рябь на пруду. В то время как нормальные волны связаны только с движением верхних слоев воды, цунами включает движение всей колонны от морского дна к поверхности.

Когда волны движутся по воде, частицы движутся по кругу. Радиус этих кругов уменьшается по мере увеличения глубины погружения в воду. Это означает, что на большей глубине волны воды действуют как продольные волны. А вблизи поверхности волны воды ведут себя как поперечные волны

5. Неразрушающий контроль

Форма: высокочастотные звуковые волны

Неразрушающий контроль - это широкий спектр методов контроля, используемых в науке и технике для оценки свойств системы, компонента или материала без их повреждения.

Одной из часто используемых методик является ультразвуковой контроль, основанный на распространении ультразвуковых волн в исследуемом материале или объекте. Очень короткие ультразвуковые импульсы с частотой от 0,1 до 50 МГц передаются на компоненты для обнаружения внутренних дефектов или свойств материала.

Поскольку ультразвуковые волны обладают высокой чувствительностью и высокой проникающей способностью, они позволяют обнаруживать чрезвычайно мелкие дефекты, скрытые глубоко в деталях. Этот метод дает немедленные результаты, поэтому инженеры могут принимать точечные решения. Он в основном используется на металлических сплавах и бетоне.

4. Традиционный сабвуфер

Форма: низкочастотные звуки

Сабвуферы предназначены для воспроизведения звуковых частот низкого тона в диапазоне от 20 до 200 Гц для потребительских товаров и менее 100 Гц для профессиональных аудиосистем для живых выступлений. Они никогда не используются в одиночку; вместо этого они расширяют низкочастотный диапазон динамиков, перекрывая более высокие диапазоны частот.

При воспроизведении песни вы можете увидеть небольшие движения в диффузоре НЧ-динамика. На самом деле он движется внутрь и наружу, и если вы попытаетесь закрыть его выход, вы почувствуете давление воздуха на вашей руке. Это происходит потому, что вуферы производят продольные волны, перемещая частицы воздуха внутрь и наружу.

3. Сейсмические волны

Сейсмические волны (желтые стрелки) могут проникать через мантию и ядро

Форма: Сейсмические волны

Сейсмические волны проходят через слои Земли. Они возникают в результате извержений вулканов, землетрясений, крупных оползней, магматических движений и крупных антропогенных взрывов. Существует два типа сейсмических волн, которые проходят через недра Земли: Первичные (Р) и вторичные (S) волны.

Первичные волны (также называемые волнами давления) имеют продольную природу. Они движутся быстрее, чем другие волны (до 8 км/с в мантии и ядре Земли и 6 км/с в земной коре), и поэтому являются первыми сигналами, обнаруженными сейсмографами.

P-волны могут проходить через твердые породы и жидкости (жидкие слои) Земли по особой схеме. Некоторые животные могут слышать P-волны, возникающие в результате землетрясения. Например, кошки и собаки начинают вести себя странно за несколько минут до землетрясения. Напротив, люди могут ощущать только удары и грохот этих волн.

2. Звуковое оружие

Дальнобойное акустическое устройство на американском корабле "Блю Ридж"

Форма: мощные звуковые волны

Звуковое оружие использует высокие частоты ультразвука, чтобы вывести из строя, ранить или убить противников. Хотя они используются в вооруженных силах и полиции, некоторые типы звукового оружия в настоящее время находятся на стадии исследований и разработок.

Это оружие производит продольные звуковые волны, которые могут вызывать у людей дискомфорт или тошноту. Они часто используются для разгона протестующих и участников беспорядков в целях сдерживания массовых беспорядков.

Оружие с использованием мощных звуковых волн может уничтожить барабанные перепонки противника, вызывая сильную боль или дезориентацию. Исследования показывают, что воздействие ультразвука высокой интенсивности (700 кГц - 3,6 МГц) вызывает повреждение кишечника и легких у мышей.

1. Акустическая микроскопия

Сканирующий акустический микроскоп

Форма: ультравысокочастотный ультразвук

Акустические микроскопы могут проникать в большинство твердых материалов, обнаруживая их внутренние особенности, такие как трещины, пустоты и расслоения. Они работают в диапазоне частот от 10 МГц до 500 МГц.

Сканирующие акустические микроскопы, например, часто используются в биологических и медицинских исследованиях. Они дают данные об эластичности тканей и клеток, что дает бесценную информацию о физических силах, удерживающих структуры в определенных положениях, и механике таких структур, как цитоскелет.

За последнее десятилетие было продемонстрировано несколько акустических микроскопов, основанных на пикосекундных ультразвуковых системах, работающих на частотах ГГц. Они все чаще применяются на наноструктурах, квантовых ямах, а также в одной биологической клетке для зондирования ее механических свойств.

Читайте Новая Наука в
Back to top button