Общие знания

Какой самый твердый материал на Земле?

Алмаз оценивается по шкале твердости Мооса на 10 баллов, что говорит о том, что это самый твердый природный материал, когда он подвергается царапинам. Однако, по прогнозам, лонсдейлит, вещество, обнаруженное в метеоритах, будет еще более твердым, чем алмаз.

Спросите любого любителя науки: "какой самый твердый материал?" - и он, несомненно, ответит: "Алмаз".

На протяжении десятилетий люди использовали безупречную твердость алмаза для интенсивной резки. Кроме того, учитывая его способность красиво взаимодействовать со светом, бриллианты являются крайне желанным украшением для женщин. Но действительно ли алмаз - самый твердый материал на Земле?

Ну, почти… ученые обнаружили потенциального соперника, который, как полагают, даже тверже, чем алмаз.

Самое твердое вещество природного происхождения на нашей планете

Когда дело доходит до природных твердых веществ, алмаз является явным победителем. Благодаря своей компактной структуре его очень трудно превзойти по твердости. Теперь возникает вопрос… как мы измеряем твердость?

Измерение твердости

В материаловедении очень важна оценка твердости материала. Однако определить твердость не так-то просто. Таким образом, твердость можно измерить по-разному, в зависимости от контекста и применимости.

Шкала твердости Мооса

Одна из наиболее часто используемых шкал твердости - шкала твердости Мооса, разработанная немецким минералогом Фридрихом Моосом в девятнадцатом веке. По этой шкале твердость - это мера сопротивления, проявляемого одним материалом при царапании другим материалом. Шкала твердости Мооса варьируется от 0 до 10, где 10 означает самую твердую (наименее подверженную царапинам), а 0 - наименьшую твердость.

Шкала твердости минералов Мооса.

Алмаз получил 10 баллов по этой шкале, что ясно указывает на то, что это самый твердый натуральный материал, когда его подвергают царапинам. Чтобы понять, насколько хорош алмаз, рассмотрим сталь, которая известна своей твердостью и имеет только 4,5 балла по этой шкале!

Так вот, измерение твердости по стойкости вещества к царапинам одобрялось далеко не всеми. Таким образом, ученые начали искать альтернативный метод измерения твердости. Была разработана еще одна методика определения твердости, в которой для оценки твердости использовался индентор.

Тест твердости по Виккерсу

Один из самых известных тестов для определения твердости с использованием индентора - это тест твердости по Виккерсу. При этом методе испытания на твердость индентор в форме пирамиды прижимается к материалу, твердость которого необходимо оценить. На данный материал в течение определенного времени прилагается определенное усилие. После этого индентора измеряется степень вмятины на материале. Это делается путём измерения площади поверхности вмятины, нанесённой индентором на материал. Здесь снова было установлено, что алмаз является самым твердым природным материалом на Земле.

Что делает бриллиант таким твердым?

В этот момент вы можете спросить себя, что делает бриллиант таким твердым? Ответ кроется в молекулярной структуре этого блестящего элемента. Алмаз - это аллотроп углерода, состоящий из пяти атомов углерода, которые разделяют электроны друг с другом в структуре тетраэдрической решетки. Ковалентная связь между этими атомами углерода чрезвычайно прочна, и ее очень трудно разорвать при комнатной температуре.

Алмаз как тетраэдрическая структура углерода.

Из-за этой прочной ковалентной связи у алмазов нет свободных электронов, что делает их плохим проводником электричества, но отличным проводником тепла. Фактически, алмаз примерно в пять раз лучше по теплопроводности, чем медь. Благодаря своей фантастической теплопроводности алмазы часто присутствуют в электрических деталях, например, в радиаторах.

Алмазы не непобедимы...

Прочитав это, вы можете почувствовать, что бриллианты непобедимы, но на самом деле это не так. Алмаз становится уязвимым при очень высоких температурах. Когда вы нагреваете алмаз выше 800 °C, его химические и физические свойства больше не остаются неизменными. Нарушение характерной прочности алмаза. Они начинают химически реагировать с железом, что делает алмаз нежелательным для обработки стали. Характерная твердость алмаза нарушается. Они начинают химически реагировать с железом, что делает алмаз нежелательным для обработки стали.

Поэтому ученые и исследователи давно ищут сверхтвердый материал, обладающий лучшей химической стабильностью. В 2009 году исследователи, работавшие в сотрудничестве из Шанхайского университета Цзяо Тонг и Университета Невады, заявили, что нашли два материала, которые могут победить алмаз в его собственной игре!

Две предложенные потенциальные претендентки на самое твёрдое вещество были: Нитрид бора вюрцита (w-BN) и Лонсдейлит.

Вюрцит нитрид бора (w-BN)

Вюрцит нитрид бора (w-BN) имеет структуру, аналогичную структуре алмаза, но он состоит из атомов бора и азота, а также углерода. Вюрцит нитрид бора чрезвычайно редок и может быть обнаружен только после определенного типа извержения вулкана. Проведенное исследователями в 2009 году моделирование гексагональной структуры w-BN показало, что она на 18% тверже стали. Кроме того, w-BN химически более стабилен, чем алмаз при высоких температурах.

Лонсдейлит

Лонсдейлит состоит только из атомов углерода, как и алмаз, хотя и с другой структурой. И угадайте, что… лонсдейлит даже сильнее, чем w-BN! Интересно, что лонсдейлит - это космическое вещество, которое получается, когда богатый графитом метеорит ударяется о Землю. Моделирование вдавливания показало, что лонсдейлит на 58% прочнее алмаза, что делает лонсдейлит самым твердым веществом на Земле.

Подождите, есть загвоздка ...

Однако в этих утверждениях о том, что w-BN и лонсдейлит сильнее алмаза, есть загвоздка. Эти утверждения основаны на программе моделирования, запущенной на компьютере, а не на физической проверке. Поскольку эти элементы чрезвычайно трудно найти, они еще не прошли физических испытаний для определения их твердости.

Тем не менее их моделирование предполагает, что эти более твердые, чем алмаз, материалы обладают хорошей термической и химической стабильностью; если мы сможем синтетически производить их в достаточно больших количествах, они могут оказаться переломными. Их можно было использовать как мощные фрезы, помещая их поверх других режущих инструментов. Кроме того, их стабильность при более высоких температурах сделала бы их полезными в космических полетах к Венере или Меркурию, которые имеют обжигающе высокие температуры.

Что ж, алмаз может теоретически потерять свою корону самого твердого материала, но он всегда останется королем драгоценных камней. Более того, утверждение о том, что лонсдейлит является самым твердым веществом, еще не подтверждено физически.

Подпишитесь на нас: Дзен.Новости / Вконтакте / Telegram
Back to top button