Химия

Что такое хроматография? Типы и применения

Хроматография

Хроматография - это метод разделения и анализа смесей веществ, а также изучения физико-химических свойств веществ. Этот физический метод позволяет химикам внимательно наблюдать за органическими и неорганическими соединениями и выяснять, из чего они сделаны.

Слово «хроматография» означает «цветное письмо», но оно является неправильным, потому что оно часто не включает бумагу, чернила, цвет или письмо.

Метод был предложен в 1903 г. Михаилом Семеновичем Цветом - выдающимся русским исследователем. Первоначально свой метод M.С. Цвет назвал адсорбционным анализом (1903) и лишь через три года - хроматографическим методом (1906)1.

Михаил Семёнович Цвет (1872-1919)— русский ботаник-физиолог и биохимик растений, создатель хроматографического метода.

M.С. Цвет использовал хроматографичекий метод для разделения пигментов растений. Для разделения хлорофиллов Цвет наполнял стеклянную трубку (колонку) твердым адсорбентом (например, инулином) и наносил на верхний слой экстракт хлорофиллов в лигроине. Затем промывал колонку лигроином. Цвет писал так – «Из нижнего конца воронки вытекает сначала бесцветная, потом желтая жидкость (каротин), в то время как в поверхностных слоях инулинового столба возникает интенсивное зеленое кольцо, на нижнем крае которого быстро образуется желтая кайма.

При последующем пропускании через инулиновый столб чистого лигроина, оба кольца, зеленое и желтое, значительно расширяются и распространяются вниз до известного предела». «Как цветные лучи солнечного спектра различные компоненты из смеси пигментов были выделены и могли анализироваться дальше количественно и качественно».2 Результат разделения, а именно последовательность различных цветовых зон Цвет назвал – хроматограммой. Для разделения пигментов Цвет использовал более ста различных адсорбентов, детально отработал технику разделения и предложил различные варианты аппаратов для своего метода (хроматографов).

Несколько десятилетий спустя открытия Цвета, ученые придумали новые виды хроматографии, различные сорбенты и хроматографическую технику.
Всемирно известно, что одно из открытий нового вида хроматографии, связано с нашей страной. В 1938 году в журнале «Фармация» вышла статья Н.А.Измайлова и М.С.Шрайбер «Капельно-хроматографический метод анализа и его применение в фармации»3, которая дала начало существования нового направления в хроматографии – тонкослойной хроматографии.

Последнее время появилось ряд сообщений авторитетных российских химиков о том, что практически параллельно с западными учеными первые работы в области аналитической газовой хроматографии выполнили в 1940-е г.г. советские исследователи М.М. Сенявин, Н.М. Тулькертауб, А.А. Жуховицкий и Д.А. Вяхирев. Это были работы по газо-адсорбционному разделению, выполненные задолго до широко известной публикации А. Джеймса и А. Мартина в 1952 г., от которой официально ведет отсчет история газовой хроматографии.4

По экспертным оценкам, хроматография относится к 20 выдающимся открытиям прошедшего столетия, которые в наибольшей степени преобразовали науку, а через нее определили уровень развития техники и промышленности, цивилизации в целом. Хотя по образованию и роду занятий Цвет был ботаником, результаты его открытия столь значимы для всех естественных наук, что Федерация европейских химических обществ, например, приводит имя Цвета, наряду с четырьмя другими русскими именами - Ломоносова, Менделеева, Бутлерова и Семенова, - в числе ста выдающихся химиков прошлого.5

Метод хроматографии основан на динамическом процессе распределения веществ между двумя фазами — неподвижной (твёрдая фаза или жидкость, связанная на инертном носителе) и подвижной (газовая или жидкая фаза, элюент). В зависимости от природы взаимодействия компонентов смеси с неподвижной и подвижной фазами и индивидуальных свойств, компоненты движутся с различной скоростью, что позволяет разделять их между собой.
Основные термины и понятия, относящиеся к хроматографии, а также области их применения были систематизированы и унифицированы специальной комиссией ИЮПАК. Согласно рекомендациям ИЮПАК, термин «хроматография» имеет три значения и используется для обозначения специального раздела химической науки, процесса, а также метода.6

Существуют различные способы классификации хроматографических методов: по физическому состоянию подвижной фазы (газовая и жидкостная хроматографии), по технике выполнения хроматографического разделения (колоночная, плоскостная, хроматография в полях сил), по природе взаимодействия разделяемых компонентов с неподвижной фазой (адсорбционная, ионообменная, эксклюзионная и др.) и др.
Современная хроматография имеет много разновидностей, наиболее популярные их них, которые помогут вам получить более полное представление о процессе представлены ниже. Мы попытались объяснить их очень простым языком.

Основы хроматографии

По своей сути хроматография включает взаимодействие двух разных фаз. Химическое соединение в одном состоянии вещества (например, жидкость или газ) перемещается по поверхности другого вещества в другом состоянии вещества (например, твердое вещество или жидкость).

Движущееся соединение известно как подвижная фаза, в то время как устойчивое вещество (которое вообще не движется) называется стационарной фазой. Компоненты подвижной фазы отделяются, когда она движется по стационарной фазе. Затем химики могут анализировать отдельные компоненты один за другим.

4 разных типа хроматографии

Существует несколько видов хроматографии, каждый из которых имеет свой вид подвижной и стационарной фазы. Хотя основной принцип остается тем же самым, способ взаимодействия различных компонентов с подвижной фазой и стационарной фазой может варьироваться в зависимости от используемого хроматографического метода.

Ниже приведен список основных типов хроматографии, которые помогут вам получить более полное представление о процессе. Мы попытались объяснить их очень простым языком.

1. Бумажная хроматография

Бумажная хроматография является наиболее распространенным и простым аналитическим методом для разделения и обнаружения цветных компонентов, таких как пигменты. Хотя в современных лабораториях чаще используют тонкослойную хроматографию, он все еще является мощным учебным пособием.

В этом методе каплю образца смеси (например, чернил) помещают вблизи края фильтровальной бумаги, а затем бумагу подвешивают вертикально, при этом ее край погружают в растворитель (вода или спирт). Бумагу подвешивают таким образом, что пятно чернил не должно касаться растворителя и остается немного над ним.

Через некоторое время растворитель (подвижная фаза) начинает постепенно продвигаться вверх по бумаге (неподвижная фаза) посредством капиллярных сил. Поскольку растворитель движется вверх, он увлекает красители, присутствующие в чернилах, вместе с ним.

Когда он поднимается, мы видим разные цвета на фильтровальной бумаге. Эти цвета представляют различные красители, присутствующие в чернилах. Поскольку разные красители имеют разные уровни растворимости и движутся с разной скоростью, когда растворитель поднимается, мы видим полосы разного цвета на разной высоте.

Вот как бумажная хроматография используется для разделения разных компонентов чернил. В некоторых случаях смеси не содержат цветных компонентов, поэтому химики добавляют другие вещества для идентификации.

2. Тонкослойная хроматография

Тонкослойная хроматография очень похожа на бумажную хроматографию. Основное отличие состоит в том, что вместо куска бумаги у нас есть предметное стекло, покрытое слоем силикагеля (неподвижная фаза). В этом методе на нижний край предметного стекла с силикагелем наносятся капли раствора исследуемой смеси, лежащие на отрезке, параллельном нижнему краю и отстоящем от него на такое расстояние, чтобы капли не погружались в элюент.

Когда они подсохнут, предметное стекло нижним краем погружается в слой растворителя (элюент). Предметное стекло с неподвижной фазой удаляется из резервуара с растворителем, когда растворитель (подвижная фаза) достигает верхнего края стекла. Различные соединения в смеси перемещаются вверх по слою силикагеля с различной скоростью в виде пятен. Эти отделенные пятна затем визуализируются в ультрафиолетовом свете.

В некоторых случаях для визуализации пятен используются химические процессы: например, серная кислота обугливает большинство органических компонентов, оставляя темное пятно на предметном стекле. Это простая и быстрая техника для разделения смесей органических соединений. Она часто используется для определения пигментов, анализа состава красителей в волокнах и выявления инсектицидов или пестицидов в пищевых продуктах.

По сравнению с бумажной хроматографией, применение тонкослойной хроматографии приводит к лучшему разделению.

3. Газовая хроматография

Газовая хроматография используется для разделения смесей летучих органических соединений. Прибор, выполняющий этот процесс, - газовый хроматограф - состоит из инжекционного порта, колонки с неподвижной фазой, детектора и системы регистрации данных. Смесь образцов (в газообразной форме) вводится через инжекционный порт.

Обычно количество пробы газа невелико, порядка микролитров. Подвижную фазу в газовой хроматографии называют газом-носителем. Поскольку мы не хотим, чтобы газ-носитель (подвижная фаза) реагировал с образцом, это должен быть инертный газ, такой как гелий, или нереакционноспособный газ, такой как азот. Колонка для газовой хроматографии (металлическая или стеклянная трубка) содержит неподвижную фазу тонкий слой жидкости или полимера на инертной твердой подложке.

Разделение компонентов в смеси происходит за счет разницы в их температурах кипения – соединения с низкой температурой кипения движутся быстрее компонентов с более высокой температурой кипения, а также за счет полярности и других специфических взаимодействий с подвижной фазой.

Это приводит к тому, что каждый компонент элюируется в разное время, также называемое временем удерживания компонента. Сравнивая времена удерживания разделенных компонентов с временами удерживания известных соединений, химики могут анализировать соединения в смеси.

4. Жидкостная хроматография

Жидкостная хроматография - это аналитический метод, используемый для разделения нелетучих соединений, находящихся в растворах в виде молекул или ионов. Его часто называют жидкостной хроматографией высокого давления, в которой подвижная фаза (растворитель) прокачивается через колонку с сорбентом под давлением.

Колонка обычно представляет собой металлическую или пластиковую трубку, заполненную крошечными частицами сорбента с определенным химическим составом поверхности. Поскольку каждое соединение в смеси по-разному реагирует с сорбентом (из-за различий в размерах, адсорбции и ионного обмена), они движутся в колонке с разными скоростями, что обеспечивает разделение их между собой. Выбор состава подвижной фазы зависит от свойств неподвижной фазы и анализируемых веществ.

Химики проводят серию тестов и отрабатывают методику разделения, чтобы найти оптимальный метод жидкостной хроматографии для смеси, который может обеспечить идеальное разделение пиков.

Вот быстрое сравнение четырех основных типов хроматографии -

метод Подвижная фаза Неподвижная фаза (НФ) Описание
Бумажная хроматография Вода или органический растворитель Бумага Разделение за счет процессов распределения
Тонкослойная хроматография Органический растворитель Оксид алюминия или силикагель - на пластине Разделение за счет процессов распределения и специфических взаимодействий с НФ
Газовая хроматография Азот или гелий Тонкий слой жидкости или полимера на инертной твердой подложке – в колонке Разделение за счет разницы в температурах кипения и специфических взаимодействий с НФ
Жидкостная хроматография Растворы Сорбенты – в колонке Разделение за счет специфических взаимодействий с НФ

Применение

За научные исследования в области хроматографии или с применением хроматографического метода были присуждены несколько Нобелевских премий.

Более 60 процентов химических исследований во всем мире проводится с помощью различных видов хроматографии. Современные хроматографы способны разделить и идентифицировать несколько сотен соединений за один анализ. Некоторые хроматографические детекторы могут определять количество вещества в масштабе ppb.

Благодаря этим преимуществам, хроматография в настоящее время широко используется в

  • Криминалистика: анализ образцов, полученных с мест преступления
  • Мониторинг загрязнений: для обнаружения небольших концентраций опасных загрязнителей в воздухе и воде.
  • Медицинская сфера: в процессе производства и контроле качества биологических и фармацевтических продуктов.
  • Пищевая промышленность: обнаружение порчи в пищевых продуктах, определение качества продуктов питания, а также контроле пищевых добавок.
  • Юридические действия: определить наличие алкоголя в крови и кокаина в моче.
  • Радиохимия: для характеристики радиоактивно меченных соединений и определения радиохимической чистоты.

Помимо этого, хроматография также используется для расшифровки ДНК и в биоинформатике, клинической диагностике заболеваний и расстройств, а также в различных исследовательских целях.


1Е.М. Сенченкова. Михаил Семенович Цвет. Москва: Издательство «Наука», 1973
2М.С. Цвет «Хроматографический адсорбционный анализ. Избранные работы. Под ред. А.А. Рихтера и Т.А. Красносельской. Изд-во АН СССР. 1946
3Измайлов Н.А., Шрайбер М.С.. Капельно-хроматографический метод анализа и его применение в фармации. Фармация. 1938, №3.с.1-7
4Р.Х. Хамизов, В.Ф. Селеменев. Кто открыл газовую хроматографию? // Сорбционные и хроматографические процессы. 2018. Т. 18. № 2. С 128-130
5"Сто лет хроматографии" В. А. Даванков, Я. И. Яшин // Вестник РАН, 2003, том 73, № 7, с. 637-646
6Nomenclature for Chromatography // Pure and Appl. Chem. 1993.Т. 65, № 4. С. 819—872

Е.В. Рыбакова

Подпишитесь на нас: Дзен.Новости / Вконтакте / Telegram
Back to top button